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Mathematics was in a bit of a flurry in the beginning of the 19th century. Non-Euclidean geometries 
began to generate interest, and the old rules that had stood for nearly two thousand years were brought 
into  question.  The  complex number  i (=√-1)  had entered  the  field  and upset  the  applecart  of  the 
mathematicians. It looked like a rotation, but mathematicians were unsure what to attribute it to, while 
physicists were yet to get wind of it. In the midst of all this, William Hamilton of Dublin, who was  
aware of the controversy over the complex numbers,  set  out to find a consistent algebra for these 
numbers.  He  realized  that  this  algebra  related  to  the  physical  concept  of  time,  saying  that  this 
“Algebra… viewed not merely as Art or Language, but as the Science of pure Time.” If one complex 
number generates a rotation,  he figured,  two complex numbers  should cover all  of 3D space.  But 
instead he found in 1843 that it needed  three complex numbers: i, j and k! This then maps onto the 
three  rotational  axes,  and along with  the  real  number,  makes  up the  Quaternion,  with  i,  j,  and  k 
following these rules:

i2 = j2 = k2 = ijk = -1  ij = k, ij = -ji

 

Hamilton first introduced the terms “scalar” and “vector.” He also introduced non-commutativity i.e. 
the order of operation mattered. This is sensible in terms of rotation, as rotating around x-axis and then 
along y-axis is different from rotating first around y and then along x. To those who had no idea what 
one complex number  meant,  let  alone  three,  this  looked scary.  But  they proved quite  useful,  and 
Maxwell incorporated them in the famous equations of electromagnetism. This brought them into the 
domain  of  physicists,  and  caught  the  attention  of  J.  W.  Gibbs  and  O.  Heaviside.  Both  of  them, 
independently, tackled quaternions in Maxwell’s works and decided to remove the complex nature of 
the numbers. Physics of the time had no rotations to map complex numbers to, and as a result, the 
physicists preferred the linear “real number” version. Heaviside complained: “how can the square of a 
vector be negative?” So they dropped the complex numbers and forced the vector part of the quaternion 
into modern Vector Analysis or Vector Algebra, using rules like cross product (e.g. right hand rule in 
electromagnetism.)  The  scalar  part  was  kept  aside,  with  rules  relating  to  the  dot  product.  The 
quaternion was broken into two convenient pieces: scalars and vectors.

Well, Hamilton’s supporters were not going to accept this dismemberment without a fight, and their 
fight  (see  A  History  of  Vector  Analysis  by  M  Crowe)  involved  eight  scientific  journals,  twelve 
scientists, and roughly 36 publications between 1890 and 1894. After this, with the increased utility of 
the vector algebra, practical concerns won the day and quaternions were pushed out of the mainstream. 
Vector algebra that is still taught today got entrenched into the textbooks. 

However, an idea whose time had come could not simply be squashed out of existence simply for 
convenience’s sake. After a couple of decades, the notion of quaternion would again poke out in two 
different streams. One stream picked up the complex number again and incorporated it into a 4D space-
time. This is what we now know as Special Relativity. Another stream picked up the non-commutativity 
as  well,  giving  rise  to  Quantum Mechanics.  Paul  Dirac,  one  of  the  pioneers  of  this  subject,  was 
fascinated by Hamilton’s work and even introduced the Hamiltonian equation into quantum mechanics. 
Quaternions was resurrected again, as were complex numbers, but without a clear connection to their 



history. All the troubles in understanding quantum mechanics to this day stem from the properties of 
the complex number and non-commutativity of quaternions, the same thing Hamilton was tackling two 
centuries  ago.  Both  mathematicians  and  physicists  have  been  at  a  loss  to  explain  how  physical 
quantities can be “imaginary”,  where the rotation called “spin” comes from, and how the order of 
physical measurement matters. And since imaginary numbers cannot be directly represented on the real 
line, non-locality was introduced into physics, which was another hard pill to swallow. Understanding 
the quaternion as an expression of rotation hence not only clears up these problems, but clears the way 
after nearly two centuries of being lost in the woods.


