Atomic Number Equation Based on Larson's Triplets

David Halprin

Where Z represents the Atomic Number, and $(\mathrm{a}, \mathrm{b}, \mathrm{c})$ is the number triplet representing the atoms:

$$
\begin{equation*}
Z+2=\frac{a(a-1)(2 \mathrm{a}-1)+b(b+1)(2 \mathrm{~b}+1)}{3}+c \tag{1}
\end{equation*}
$$

If $a=b$ then this reduces to

$$
\begin{equation*}
Z+2=\frac{2 \mathrm{~b}\left(2 \mathrm{~b}^{2}+1\right)}{3}+c \tag{2}
\end{equation*}
$$

If $\mathrm{a}=\mathrm{b}+1$ then it reduces to

$$
\begin{equation*}
Z+2=\frac{2 \mathrm{~b}(b+1)(2 \mathrm{~b}+1)}{3}+c \tag{3}
\end{equation*}
$$

$\mathbf{a}=\mathbf{b}$		$\mathbf{a}=\mathbf{b}+1$		Range of \mathbf{c}	Z	Range of \mathbf{Z}
a	b	a	b			
		2	1	-1 to 4	c +2	1 to 6
2	2			-4 to 4	c +10	6 to 14
		3	2	-4 to 9	c +18	14 to 27
3	3			-8 to 9	c +36	28 to 45
		4	3	-8 to 16	c + 54	46 to 70
4	4			-15 to 16	c + 86	71 to 102
		5	4	-15 to -1	c +118	103 to 117

Equation (1) is exactly representative of Dewey's algorithm.
Equations (2) and (3) are just simplifications of Equation (1) when $\mathrm{a}=\mathrm{b}$ and $\mathrm{a}=\mathrm{b}+1$ respectively.
Some specific examples:
Larsonium ${ }^{1}$ 5-4-(1) substituted into Equation (3) gives $Z=117$ as expected, however there is an interesting aside to consider, despite its counter-intuitive appearance and it requires some interpretation within RS too.

[^0]| Atom /
 Particle | Atomic Number | |
| :---: | :---: | :---: |
| | a-b-c | \mathbf{Z} |
| | $0-0-(1)$ | -3 |
| Electron | $1-0-(1)$ | -3 |
| Rotational base | $1-0-0$ | -2 |
| | $0-0-0$ | -2 |
| | $0-0-1$ | -1 |
| Positron | $1-0-1$ | -1 |
| Neutrino | $1-1-(1)$ | -1 |
| Neutron | $1-1-0$ | 0 |
| Deuteron | $1-1-0$ | 0 |
| Alpha Particle | $1-1-0$ | 0 |
| Deuterium | $1-1-1$ | 1 |

[^0]: 1 Not an "official" name for the element; also identified as Farnsium in Futurama episode, "Near-Death Wish."

