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The  preliminary results  of  a  critical  study of  the  Wave  Mechanics  carried  out  in  the  light  of  the 
knowledge of  the Reciprocal  System of  theory have been reported  earlier.1 Some of  its  important 
findings  are  as  follows.  While  the  Wave  Mechanics  has  been  very  successful  mathematically,  it 
contains  some  fundamental  errors.  The  principal  stumbling  block  has  been  the  ignorance  of  the 
existence  of  the  time  region  and  its  peculiar  characteristics.  The  crucial  points  that  need  to  be 
recognized are that the wave associated with a moving particle, in a system of atomic dimensions, 
exists in the equivalent space of the time region; and that switching from the particle view to the wave 
view is equal in significance to shifting from the standpoint of the three-dimensional spatial reference 
frame to that of the three-dimensional temporal reference frame that is germane to the time region. To 
imagine that even gross objects have a wave associated with them is a mistake: the question of the  
wave does not arise unless the phenomena concerned enter the time region.

One corollary is that the theorists’ assumption that the wave associated with the moving particle is 
spatially co-extensive with the particle is wrong since the former exists in the equivalent space, not in 
the extension space of the conventional spatial reference system. The Uncertainty Principle stems from 
the theorists’ practice of resorting to wave packets.

It has further been shown that the probability connotation of the wave function arises from the two 
facts that the wave is existent in the three-dimensional temporal manifold, and that locations in the 
three-dimensional  temporal  manifold  are  only  randomly  connected  to  locations  in  the  three-
dimensional spatial  manifold.  The  non-local nature of the forces (motions) in the time region also 
follows from these facts.

Calculations based on the inter-regional ratios applicable confirm Larson’s assertion that the measured 
size of the atom is in the femtometer range and hence what is found from the scattering experiments is 
the size of the atom itself—not of a nucleus.

From the above study it became abundantly clear that the critics’ comments that the small-scale world 
is not intrinsically rational and that the Quantum theory cannot be understood intuitively were wrongly 
founded. What was really missing was the knowledge of the existence and characteristics of the time 
region, the region inside the natural unit of space, where only motion in time is possible. Since our  
knowledge of  the Reciprocal  System helped straighten some of the conceptual  kinks  of the Wave 
Mechanics and has indicated that its original basis has been rightly (though unconsciously) founded, an 
attempt has been made to inquire into its mathematical aspects in order to see whether they are valid in 
the light of our understanding of the Reciprocal System. The results of this inquiry are reported in this 
article.

1 K.V.K. Nehru, “The Wave Mechanics in the Light of the Reciprocal System,” Reciprocity, Vol. XXII, No. 2, Autumn 
1993, p. 8–13.
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2 Quantum Mechanics

1 Where Do We Stand
Before proceeding further it would be desirable to take a stock of the atomic situation from the point of  
view of the Reciprocal System.

Firstly, Larson2 asserts that the atom is without parts, that it is a unit of compound motion, motion 
being the basic constituent of the physical universe. This means that both the nucleus and the so-called 
orbital electrons are non-existent.

Secondly,  he argues  that  there is  no electrical  force either,  involved in  the atomic  structure.  This, 
therefore,  leaves  gravitation  and the  space-time progression  as  the  only two motions  (forces)  that 
operate inside the time region with, of course, the appropriate modifications peculiar to the time region 
introduced into them.

Under these circumstances the question of a “nuclear” force does not arise at all. But it is perfectly 
legitimate to inquire what forces (motions) are encountered by a particle as it approaches the vicinity of 
an atom, and indeed, as it enters the very atom itself. Equally important is to inquire into the mechanics 
of the converse process of the emission of a particle by the atom.

2 The Wave Equation
The most fundamental starting point for the mathematical treatment in the Quantum Mechanics is the 
wave equation. The wave equations in the quantum theory govern the wave functions associated with 
the particles, and correspond to Newton’s laws of classical mechanics. From our earlier study we have 
seen that changing from the particle picture to the wave picture is a legitimate strategy that needs to be  
adopted  on  entering  the  time  region,  as  it  is  tantamount  to  shifting  from the  conventional  three-
dimensional  spatial  reference  frame  of  the  time-space  region to  the  three-dimensional  temporal 
reference frame of the time region. Therefore the next logical step is to examine how the governing 
equations  of  the  wave  phenomena  have  been  arrived  at  and  see  if  it  is  in  consonance  with  the 
Reciprocal System.

Since it is always possible to constitute a wave of any shape by superposing different sinusoidal waves 
of  appropriate  wavelengths  and  frequencies,  we  shall  limit  our  discussion  to  these  elementary 
sinusoidal waves. The relation between the wave number k and the wavelength λ on the one hand, and 
that between the angular frequency ω and frequency ν on the other, are as follows:  

k=
2π
λ

;ω=2π ν  (1)

The wave speed u is given by

u=λ⋅ν=ω
k

 (2)

The general functional forms of sinusoidal waves are

sin(kx±ω t )
cos(kx±ω t)}  (3)

2 Larson, Dewey B., The Case Against the Nuclear Atom, North Pacific Publishers, Oregon, USA, 1963.

http://library.rstheory.org/books/cana
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and in complex exponential form (see Appendix I: Euler’s Relations)

e i(kx±ω t )  (4)

where the imaginary unit i is defined by i2 = –1.

Complex functions involve a real part and an imaginary part. Since at this stage of our discussion the 
nature of  the wave function of particles  is  yet  unknown,  there is  no theoretical  reason to  exclude 
complex functions. Let us bear in mind that the criterion of judgment is what is possible in the time 
region, not what is possible in the time-space region. To be sure, observable quantities in the time-space 
region  ought  to  be  real.  However,  by virtue  of  the  second power  relation  between  corresponding 
quantities in the time region and the time-space region, the observable value of a time region quantity 
would still be real even if it were to be imaginary in the time region (e.g. a quantity  i·ν in the time 
region would appear as (i·ν)2, that is, –ν2 in the outside region).

2.1 Radiation Waves

Let us derive the governing equation for the wave propagating at constant speed, like that of radiation. 
First we note the relation between the momentum p of the wave and the wave number k, and the energy 
E and its angular frequency ω,

p=ℏ k ; E=ℏω  (5)

where ħ is Planck’s constant ħ divided by 2π.

From the energy-momentum relationship of the wave, p2c2 = E2, (c being the constant wave speed) we 
have

p2
=

1

c2
E 2 ,

ℏ
2 k 2

=
1
c2 ℏ

2
ω

2 ,

k 2
=

1
c2 ω

2

 (6)

Assuming  the  simplest  wave  form,  that  of  a  sine  wave,  we  write  the  wave  function  in  complex 
exponential form as

Ψ(x , t)=A⋅e i(kx−ω t )  (7)

where A is an arbitrary constant. For such a function,

∂Ψ
∂ x

=i k⋅Ψ

∂Ψ
∂ t

=−i ω⋅Ψ}  (8)

That  is,  taking  the  derivative  with  respect  to  x is  equivalent  to  multiplying  by  ik,  and  taking the 
derivative with respect to time t is equivalent to multiplying by –iω. Thus
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∂
2
Ψ

∂ x 2
=(i k )

2
⋅Ψ=−k 2

⋅Ψ

∂
2
Ψ

∂ t 2 =(−i ω)2⋅Ψ=−ω2⋅Ψ}  (9)

Substituting these in the last of Equation (6) we obtain

∂
2
Ψ

∂ x2
=

1

c2
∂

2
Ψ

∂ t 2
 (10)

which  is  exactly the  wave equation  we are seeking (see  Appendix II:  The General  Equation  of  a
Constant Speed Wave).

2.2 Matter Waves

At the instance of his mentor Peter Debye, Erwin Schrödinger made a detailed study of the wave 
hypothesis advocated in 1924 by de Broglie. Schrödinger noted that the energy-momentum relationship 
of a free particle (not acted by forces) of mass m

p2

2m
=E  (11)

leads to the wave number–angular frequency relation

ℏ
2 k 2

2 m
=ℏ⋅ω  (12)

From Equations (2) and (12) we see that the wave speed in this case is given by

u=
ℏ k
2m

 (13)

Therefore the speed of  the matter  waves  is  not  constant  like that  of  the radiation waves,  but  is  a 
function of the wave number k. Equation (12) could be rearranged as

−
ℏ

2

2 m
(i k )

2
=i ℏ (−i ω)

Multiplying both sides by Ψ, we can at once see from Equations (8) and (9) that

−ℏ
2

2 m
∂

2
Ψ

∂ x2 =i ℏ ∂Ψ
∂ t

 (14)

which is the governing equation for the wave associated with the free particle that we are looking for. 
This  is  the Schrödinger  equation  for  the  free particle.  It  is  the  equation  in  the  time region which 
corresponds to Newton’s first law of the time-space region.

In order to include interactions of the particles with the environment we note that the total energy of 
such a particle consists of the kinetic energy and the potential energy. The latter could be taken to be 
dependent only on position and represented by a potential energy function V(x). Thus for a conservative 
system we have the constant total energy E given by
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p2

2m
+V ( x)=E  (15)

The corresponding wave number-frequency relation, associating frequency with the total energy, is

ℏ
2 k 2

2m
+V =ℏω

Adopting Equations (8) and (9) as before, we arrive at the Schrödinger wave equation with interaction 
present

−
ℏ

2

2 m
∂

2
Ψ

∂ x2 +V ( x)⋅Ψ=i ℏ ∂Ψ
∂ t

 (16)

This corresponds in the time region to Newton’s second law in the time-space region.

As can be seen from the foregoing derivations, nothing against the principles of the Reciprocal System 
has been introduced so far. Hence the Schrödinger equations can be admitted as legitimate governing 
principles for arriving at the possible wave functions of an hypothetical particle of mass m traversing 
the time region, with or without potential energy functions as the case may be. We may note in the  
passing  that  often  considerable  mathematical  dexterity  is  required  in  solving  these  differential 
equations, though computer-oriented numerical methods are fast replacing closed-form solutions.

Any wave corresponding to a state of definite energy E has a definite frequency ω = E/ħ. Therefore 
from Equation (7) we can write

Ψ(x , t)=A⋅e
−i E t

ℏ ⋅ψ(x )  (17)

where ψ(x) is a function of space variable only. Inserting the above into Equation (16) and dividing out 
the factor e–iEt/ħ throughout, we get the differential equation to be satisfied by ψ(x)

−
ℏ

2

2m
∂

2
ψ

∂ x2 +V (x )⋅ψ(x)=E⋅ψ(x)  (18)

which is referred to as the time-independent Schrödinger equation. This equation is less general and is 
valid only for states of definite total energy.

3 States of Negative Energy
It is instructive to see what the solutions of Schrödinger equation turn out to be. Firstly, in any region of 
constant potential energy V, we see that the solution of Equation (18) is a sinusoidal function,

ψ( x)=A⋅sin(k x) or A⋅cos (k x )

k 2
=

2m⋅(E−V )

ℏ
2 }  (19)

(E - V) being the kinetic energy.
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3.1 The Step Function

Figure 1: Potential Energy Step

In Figure 1(a) we picture a step-function potential energy, which is constant at V1 and V2 respectively in 
two different regions. A possible wave function corresponding to this case is shown in Figure 1(b). The 
particle’s greater kinetic energy (E -  V1) in the region  x < 0 is reflected in its  larger wave number 
(smaller  wavelength)  in  this  region.  Also  since  its  speed  in  this  region  is  greater,  it  spends 
comparatively less time in this region, and this reflects as its smaller amplitude in this region.

An interesting case occurs when the potential energy V in any region is greater than the total energy E. 
Here the kinetic energy, E - V, becomes negative! This is physically impossible in the time-space region 
and the particle can never enter such region. However, the situation is different in the time region: 
Equation (18) has valid solutions in the region, with k from Equation (19) taking on imaginary values,

ψ( x)=A⋅e±b x

b=i⋅k }  (20)

The sign of the exponent is so chosen as to see that ψ tends to zero for large x. Figure 2 illustrates this 
case: in the region x > 0 we see that E is less than the potential energy. The wave function is sinusoidal 
in the region of positive kinetic energy and is exponential in the region of negative kinetic energy. Both 
functions join smoothly at x = 0 with a first order continuity. The penetration of the wave function into 
the region of negative kinetic energy has no classical analog and is purely a phenomenon of the time 
region.

0
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V
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V
2
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Figure 2: Negative Kinetic Energy

3.2 Explanation of the Negative Energy States

When we turn  to  the  Reciprocal  System for  an  explanation  of  the  possibility  of  the  existence  of 
negative energy states, what we find is as follows. In the time-space region, that is, in the context of the 
three-dimensional spatial reference frame, speed (space/time) is vectorial, that is, can have direction in 
space and therefore could take on positive or negative values. This is because in this case space is 
three-dimensional and time is scalar. In this frame, energy, which is one-dimensional inverse speed 
(time/space), is scalar, and can take on zero or positive values only. On the other hand, the time region 
is a domain of the three-dimensional temporal reference frame. In this case time is three-dimensional 
and  space  is  scalar.  Consequently  the  inverse  speed  (namely,  energy)  is  the  quantity  that  is 
“directional,”  that  is,  can  take  on  a  “temporal  direction”  in  the  context  of  the  three-dimensional 
temporal reference frame. Therefore it is perfectly possible for it to take on negative values as well. (It  
must  be  cautioned  that  “direction  in  time”  has  nothing  to  do  with  direction  in  space;  it  is  to  be 
understood that we are only speaking metaphorically.) Further, in the time region, speed is the quantity 
that  is  scalar,  an example being the net  total  speed displacement  of  the atom, namely,  the atomic 
number Z.

Moreover the possibility that even potential energy (being an inverse speed) could be “directional” in 
the three-dimensional time, and hence be represented by complex numbers in the time region, cannot 
be overlooked. Indeed the Quantum theorists find it necessary to adopt the complex potential V+i·W in 
place of V in scattering theory. Here the wave number k becomes complex and is written as k+i·q·b of 
Equation (20) becomes b = i(k + i·q) = –q + i·k, and we have

ψ=( A⋅e−q x)(e i k x )  (21)

We can at once see that this is the wave function of a traveling wave of whose amplitude decreases as it  
advances, and therefore represents a beam of particles some of which are getting absorbed.
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3.3 The Potential Energy Barrier

Figure 3: Potential Energy Barrier

An interesting  situation  arises  when  two  regions  of  positive  kinetic  energy occur  separated  by  a 
potential energy barrier that is higher than the total energy as shown in  Figure 3(a). In the central 
region (of negative kinetic energy) the wave function is exponential, while it is sinusoidal on either side 
as shown in Figure 3(b). At either boundary the function and its first derivative are continuous. From 
this it is apparent that the particle represented by the wave has a non-zero probability of appearing on 
the other side of the barrier! While this is a real time region phenomenon that has been observed (the 
“tunneling”), it has no analog in the time-space region (classical mechanics).

3.4 The Potential Energy Well

Figure 4: Potential Energy Well
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The last case of interest we wish to consider is that of a potential well as shown in Figure 4(a), wherein 
the total energy E is less than the potential energy V1 in the outer regions. As before, we find that the 
wave function is sinusoidal in the (central) region of positive kinetic energy, and is exponential in the 
(outer) regions of negative kinetic energy, maintaining first order continuity at the boundaries. But here 
a new factor emerges, namely, that if we choose an arbitrary value of E, it might become necessary to 
adopt  growing exponentials  in  the  outer  regions  (for  example,  e+bx for  x > L)  so  as  to  satisfy the 
continuity conditions at the boundary. This therefore leads to an unreal state of affairs. The physical 
requirement is that the wave function goes towards zero with increasing space coordinate in the outer 
regions. This necessitates the choice of shrinking exponentials in the outer regions (for example, e–bx for 
x > L). This requirement, coupled with the continuity constraints at the boundary, limits the possible 
energies to a series of distinct levels, each with its own wave function. Thus, well-type potential energy 
functions give rise to set of possible discrete energy levels. This fact can be seen directly to lead to the 
explanation of several observable facts including the atomic spectra.

4 Origin of the Pauli Exclusion Principle
The so-called exclusion principle was originally promulgated by Wolfgang Pauli. This is an empirical 
law to which no exception was ever found. It has been a heuristic guiding rule for understanding many 
an important quantum phenomenon. In spite of its important role, the explanation of its origin has 
defied the theorists. Therefore that this explanation is now forthcoming from the Reciprocal System is a 
point in favor of the general nature of the latter theory.

4.1 The Spin

But first we must recognize a point that we have been emphasizing,3,4 namely, that rotational space is as 
fundamental as the linear (extension) space.  Larson explains: “…the electron is essentially nothing 
more than a rotating unit of space. This is a concept that is rather difficult for most of us when it is first  
encountered, because it conflicts with the idea of the nature of space that we have gained from a long-
continued,  but  uncritical,  examination  of  our  surroundings.  …the  finding  that  the  ‘space’ of  our 
ordinary experience, extension space, as we are calling in this work, is merely one manifestation of 
space in general opens the door to an understanding of many aspects of the physical universe…”5 He 
points out that an atom, for example,  can exist  in a unit  of rotational space as it  can in a unit  of 
extension space.

In a paper entitled “Photon as Birotation”6 we have derived that the basic unit of angular momentum is 
½ħ. Now we find that the Quantum theorists have been referring to this basic unit of rotational space as 
the  spin. In addition to the three space coordinates, spin is treated as a fourth coordinate. Thus two 
different  particles  can occupy the same location in  extension space  at  the same time if  their  spin 
coordinate differs.

4.2 Indistinguishability

In connection with a class of elementary particles, we know that any two individual particles (say, two 
electrons) are absolutely alike. In the time-space region, the fact that two particles are identical presents 

3 Nehru K.V.K., “The Law of Conservation of Direction,” Reciprocity, Vol. XVIII, № 3, Autumn 1989, p. 3.
4 Nehru K.V.K., “On the Nature of Rotation and Birotation,” Reciprocity, Vol. XX, № 1, Spring 1991, p. 8.
5 Larson D.B., Basic Properties of Matter, International Society of Unified Science, Utah, USA, 1988, pp. 102-3.
6 Nehru K.V.K., “The Photon as Birotation,” Reciprocity, Vol. XXV, № 3, Winter 1996-97, pp. 11–16

http://reciprocalsystem.org/PDFa/The%20Photon%20as%20Birotation%20(KVK,%20Nehru).pdf
http://library.rstheory.org/books/bpom
http://reciprocalsystem.org/PDFa/On%20the%20Nature%20of%20Rotation%20and%20Birotation%20(KVK,%20Nehru).pdf
http://reciprocalsystem.org/PDFa/The%20Law%20of%20Conservation%20of%20Direction%20(KVK,%20Nehru).pdf
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no complications since they can be kept distinguished by their respective locations. But in the quantum 
phenomena, because of the  non-local  nature of the time region, no such distinction is possible. This 
intrinsic indistinguishability gives rise to some special constraints. Let us take  ψ(1,2) to be the wave 
function of two indistinguishable particles with particle 1 at location r1 (whose coordinates include the 
spin coordinate also) and particle 2 at location r2. Then [ψ(1,2)]2 represents the probability distribution 
for particle 1 to be at r1 and particle 2 to be at r2. Since we cannot distinguish between the particles, the 
wave function  should  be  of  such  a  form that  it  results  in  the  same probability  distribution  if  we 
interchange the two particles in ψ. That is

[ψ(1,2)]
2
=[ψ(2,1)]2

This can be satisfied in two ways,

ψ(1,2)=+ψ(2,1)
ψ(1,2)=−ψ(2,1)}  (22)

The first type of wave functions are referred to as the symmetric and the second as the antisymmetric  
functions.

Now the empirical finding is that the wave functions of particles like protons and neutrons which are 
known to have half-integral spin (½ħ) are antisymmetrical, and those of particles with integral spin 
(like the photons) are symmetrical. The most fundamental statement of Pauli exclusion principle goes 
somewhat  like  this:  “Any  permissible  wave  function  for  a  system  of  spin-½  particles  must  be 
antisymmetric with respect to interchanging of all coordinates (space and spin) of any pair of particles.” 
But  enunciating  a  principle  is  quite  different  from explaining  its  origin,  and  the  fact  is  that  no 
theoretical explanation has been found for this empirical finding. One author writes: “For reasons that 
are not clearly understood, for electrons, protons, neutrons, and all other spin-½ particles, the  minus 
sign is chosen…”7

4.3 The Two Types of Reference Points

From the Reciprocal System we have now the explanation. Let us recall that in the universe of motion 
there  are  two  types  of  reference  frames—the  conventional,  stationary  three-dimensional  spatial 
reference frame (or its cosmic analog, the three-dimensional temporal reference frame) and the moving 
natural reference frame. We also have two kinds of objects, those having independent motion like the 
gravitating particles and those having no independent motion of their own and hence are stationary in 
the  natural  reference frame,  like the photons  and those particles  having  potential  mass8 only.  The 
reference point for the scalar inward motion of the gravitating particle is the particle itself. Thus if there 
are two locations A and B in the three-dimensional reference frame with this particle situated at A, say, 
its gravitational motions appears in the direction  BA, because it is inward, toward itself. If now the 
particle is shifted to location B, the direction of its gravitational motion seems reversed, being in the 
direction AB. This is the origin of the antisymmetry of the wave functions of such particles.

As already remarked, a unit of one-dimensional rotation carries unit spin (½ħ). The resultant spin of a 
two-dimensional rotation with unit spin in each dimension is 1×1 = 1 (that is, ½ħ) or is 1×(-1) = -1 (that 
is, -½ħ). On the other hand, the resultant spin of a birotation (like the photon) is 1+1 = 2 (that is, ħ) or 
1-1 = 0. Since gravitation arises out of the two-dimensional rotation, we can see that a gravitating 
particle carries spin-½. Thus the wave function of spin-½ particles turns out to be antisymmetric.

7 Cohen, B. L., Concepts of Nuclear Physics, Tata McGraw Hill, India, 1971, p. 38.
8 Larson D. B., Nothing But Motion, North Pacific Publishers, Oregon, USA, 1979, pp. 141-2, 165-7.

http://library.rstheory.org/books/nbm/13.html#Page%20165
http://library.rstheory.org/books/nbm/11.html#Page%20141
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On the other hand, the reference point for the motion of particles like the photons is the location in the 
natural reference frame, or what Larson calls the “absolute location.” The natural reference frame is 
not a spatial manifold; nor is it  a temporal manifold. It  is a speed manifold: each location in it  is  
moving at unit speed, one unit of space per unit of time. Suppose that the spatial separation between 
two locations in this frame (the absolute locations) increases by n natural units of space. Because of the 
unit speed criterion, there is concomitant increase in the separation in time by n natural units of time, 
making n/n = 1. The expansion in space is completely nullified by the expansion in time (because an 
increase in space is equivalent to a decrease in time and vice versa), and from a  space-time point of 
view there is no separation between absolute locations.

In the context of the three-dimensional reference frame, photons appear to move  outward from the 
point of their origin. But we have already seen that the photon is stationary in the absolute location. Its 
apparent motion is the outward motion of the absolute location (in which it is situated) away from all 
other absolute locations. The crucial point that should now be recognized is that  outward from one 
absolute location is still outward from any other absolute location because of the equivalence of these 
absolute locations as explained above. Therefore, interchanging the location of the photon between two 
such absolute locations has no effect on the sign of its wave function. That is, the wave function of such 
particles is symmetric. One final word is in order: all that has been said above is also true in the time  
region, except that the scalar direction outward in the time-space region manifests as inward in the time 
region and vice versa.

5 Potentials in the time region
Finally it might be of interest to explore the nature and type of the potential energy functions  V (see 
Equation (15)), in the time region. In view of the maiden nature of the investigation and the insufficient 
time available, the results reported in this section may have to be treated as tentative.

5.1 Dimensional Relations across the Regions

Discussing the effect of the inversion of space and time at the unit level on the dimensions of inter-
regional relations, Larson9 shows that the expressions for speed and quantities related to speed in the 
time region are the second power expressions of the corresponding quantities belonging to the time-
space region. This is because motion (speed) has a spatial component and a temporal component. Since 
unit space is the minimum that can exist, within the time region—the region  inside unit space—the 
spatial  component of a speed remains constant at  1 unit  and all  variability can be in the temporal 
component, t, only. By virtue of the reciprocal relation between space and time the t units of time are 
equivalent to 1/t unit of space and manifest so in the time region. That is why Larson uses the term 
equivalent space (that is, inverse space) as synonym for time region. The equivalent speed in the time 
region is, therefore, given by the ratio of the equivalent space to time, (1/t)/t = 1/t2. This quantity is the 
second power expression of the speed in the time-space region with 1 unit of space component and t 
units of time component, namely, 1/t.

In  an  earlier  article1 we have  identified  two different  zones  of  the  time  region,  namely,  the  one-
dimensional and the three-dimensional. The second power relation mentioned above could be seen to 
apply specifically to the one-dimensional zone, the zone of  one-dimensional rotation associated with 
the  atoms or  subatoms.  On the  other  hand,  for  the  three-dimensional  zone—where  the  compound 

9 Ibid., p. 155.

http://library.rstheory.org/books/nlosat/11.html#Page%20155
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motions constituting an atom exist—the situation is different because the basic rotation that constitutes 
the atom is two-dimensional. The temporal component of a two-dimensional rotation in the time region 
would be t2, and its spatial equivalent is 1/t2. So the equivalent speed in the case of two-dimensional 
rotation turns out to be (1/t2)/t2 = 1/t4. As could be seen, this is the fourth power expression of the 
corresponding time-space region speed 1/t. (Note that in the time-space region time is scalar and there 
cannot be anything like two-dimensional time.)

Looking back, we can now easily see why the quantum theorists required  complex numbers to deal 
with the so-called “electronic energy levels” of the atom adequately: they needed to cope up with the 
two-dimensional character of the equivalent speed pertaining to the one-dimensional rotation in the 
time region. It also suggests itself that we require to adopt quaternions to handle the so-called “nuclear 
energy levels”  since  the  dimensionality of  the  equivalent  speed pertaining  to  the  two-dimensional 
rotation in the time region is four.

5.2 Potentials in the Time-space Region

At  this  stage  of  our  study we  have  only  two  scalar  motions  (forces)  to  consider:  the  space-time 
progression and gravitation. In the outside region (the time-space region), the forces due to the space-
time progression and gravitation are respectively given by

F PO=K PO

FGO=−
K GO

r 2 }  (23)

where all the quantities concerned are in the natural units, the  K’s are positive constants and  r the 
distance factor. Suffix  G refers to gravitation,  P to space-time progression and  O to outside region. 
From the definition of potential, F = –∂V/∂r, we obtain the expressions for the corresponding potentials 
due to the space-time progression and gravitation, in the outside region respectively as

V PO=−K PO⋅r

V GO=−
K GO

r }  (24)

The potential due to the space-time progression is repulsive while that due to gravitation is attractive as 
can be seen.

5.3 Potentials in the One-dimensional Zone of the time region

Potential energy being inverse speed, the expressions for the potentials in the one-dimensional zone of 
the time region would be the second power expressions of the corresponding ones in the time-space 
region (Section 5.1). Consequently the space-time progression and gravitational potentials in this zone 
could be written as

V P1=K P1⋅r 2

V G1=
KG1

r 2 }  (25)

with suffix 1 referring to the one-dimensional zone. We can at once verify that gravitation is repulsive 
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and the space-time progression attractive in this region. In addition there could be a constant term KI1, 
representing the initial level of the time region potential. Thus the total time region potential in the one-
dimensional zone turns out to be

V T1=K P1⋅r 2
+

KG1

r 2 ±K I1  (26)

The values of KG1 and KI1, and possibly KP1, are functions of the displacements of the atom in the three 
scalar dimensions.

It is instructive to see what the expressions for the corresponding forces would be: differentiating with 
respect to r and taking the negative sign, we have

F P1=−2⋅K P1⋅r

F G1=
2⋅K G1

r3 }  (27)

Larson10 however, while calculating the inter-atomic distances in solids, basing on the equilibrium of 
the time region forces, adopts

F P1=−1

FG1=
K

r4 }  (28)

where  K is a function of the several atomic rotations. These expressions can be seen to differ from 
Equations  (27) above. But whether we take Equations  (27) or Equations  (28), the force equilibrium 
equation,  FP1 =  FG1 can be seen to lead to the same fourth power dependence on the distance factor. 
Consequently,  even if  we find that  Equations  (27) are to adopted in preference to Equations  (28), 
Larson’s original inter-atomic distance calculations would remain unaltered.

The  time  region  potential  Equation  (26) results  in  a  potential  well  and therefore  the  solutions  of 
Schrödinger’s Equation  (18) yield a set of discrete energy levels for the atomic system (see Section 
3.4).  It  remains  to  be  verified  whether  these  truly  correspond  to  the  values  inferred  from  the 
spectroscopic data.

5.4 Potentials in the Three-dimensional Zone of the time region

Turning now to  the potentials  in  the  three-dimensional  zone,  following our  earlier  analysis  of  the 
dimensional  situation  (Section  5.1),  we  adopt  the  fourth  power  expressions  of  the  corresponding 
outside region (that is, the time-space region) quantities from Eqs. (24)

V P3=K P3⋅r 4

V G3=
KG3

r 4 }  (29)

with suffix 3 denoting the three-dimensional zone.

We know that the space-time progression acts away from unit space. In the time-space region away 

10 Larson, Dewey B., Basic Properties of Matter, op. cit., p. 8.

http://library.rstheory.org/books/nlosat/01.html#Page%208
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from unit is also away from zero (the origin of the conventional spatial reference frame), whereas in the 
time region (that is, in less than unit space) away from unit is toward zero. This is the reason why the 
space-time progression is an outward motion in the outside region while it is inward in the time region.  
This is true in the one-dimensional zone of the time region as much as in the three-dimensional zone.  
But the “unit” of the three-dimensional zone does not coincide with the “unit” of the one-dimensional 
zone. Its boundary is determined by the apparent size of the atom in question. This is because the atom 
and the three-dimensional zone are  one and the same thing. (We must avoid falling into the trap of 
imagining that first there is an atom, and that it “occupies” the pre-existing three-dimensional zone!) In 
Equation (7) of the article on Wave Mechanics1 we have derived the following expression for the size 
of the atom,

r A=1.2×A1 /3 femtometers

where A is the atomic weight. Expressing this in the natural units as rAn, we now note that the reference 
point for reckoning distance in the case of VP3 is not the origin of the reference system but the point at 
rAn. Finally, since the potential due to progression has to be attractive a minus sign has to be introduced. 
Thus the expressions for the two potentials are

V P3=−K P3⋅(r An−r )4

V G3=
KG3

t 4 }  (30)

Adding a  constant  term  KI3 to  take care of initial  level  of  the potential  energy,  we have the total 
expression for the potential of the three-dimensional zone of the time region as

V T3=−K P3⋅(r An⋅r )4
+

KG3

r 4 ±K I3  (31)

We note  that  this  corresponds to  what  the  conventional  Quantum theorists  would call  the  nuclear 
potential. Our study indicates that Equation (31) bears a remarkably close qualitative resemblance to 
the potentials arrived at through the scattering experiments. An unexpected feature of the experimental 
data analysis was the occurrence of a  repulsive core of small radius. The Reciprocal System, on the 
other hand, actually predicts this repulsive core, namely, VG3.

6 Conclusions
Let us summarize the highlights. Having resolved the riddle of the wave-particle duality in an earlier 
article1 and understood the legitimacy of the wave picture in the Quantum theory, attempt has been 
made to examine the foundation of its mathematical formalism with the benefit of our knowledge of the 
Reciprocal System. This proved productive in two ways: firstly it clarified the situation in connection 
with the Quantum Mechanics, identifying some of its  conceptual errors. Secondly it gave scope to 
expand our knowledge of the Reciprocal System in the form of new insights that would not have been 
possible otherwise.

(i) The Schrödinger equations were found to be valid general rules for the exploration of the 
wave functions in the various situations. 

(ii) In the time-space region, speed can be vectorial (that is, “directional” in the context of the 
three-dimensional spatial reference frame), whereas inverse speed (like, energy) is scalar. In 
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the time region, speed is found to be scalar, whereas inverse speed is directional—directional 
in  the  three-dimensional  temporal reference  frame. Variables  of  the  latter  type,  therefore, 
could  take  on  inherently  negative  values  and  be  represented  by  complex  numbers  or 
quaternions as the case may be. 

(iii) The penetration of the wave associated with particle into the regions of negative kinetic energy 
resulting from potential energy barriers is found to be a genuine time region phenomenon. 

(iv) In a similar vein, it is found that the occurrence of a well type potential energy function in the 
time region leads to the limiting of possible values of total energy to a discrete set. 

(v) Such  an  important  empirical  law  as  Pauli  exclusion  principle,  which  has  no  theoretical 
explanation in the context of the conventional theory,  could easily be understood from the 
knowledge of the positive and negative reference points brought to light by the Reciprocal 
System. 

(vi) Reasoning  from  the  principles  of  the  Reciprocal  System  the  possible  potential  energy 
functions of the time region relevant to atomic systems are surmised. While they evince a 
close qualitative resemblance to the empirically found potentials, detailed further study needs 
to be carried out to see if they lead to the correct prediction of the properties pertaining to 
spectroscopy, radioactivity and the scattering experiments. 

On the whole there seems to be a prima facie case in favor of adopting the Quantum Mechanics after 
purging it of its conceptual errors.

Appendix I: Euler’s Relations
Often calculations are facilitated by adopting exponential functions with imaginary arguments in place 
of the sine or cosine functions, making use of Euler’s relations

eia
=cosa+i sin a

e−ia
=cos a−i sin a

which directly follow from the series expansions of these functions.

A number containing  imaginary  as well as  real parts is called a  complex number. Complex numbers 
may be represented graphically on a rectangular coordinate system, with the real part corresponding to 
the  horizontal  axis  and the imaginary part  to  the vertical  axis.  Any complex number  can  then  be 
represented by a vector extending from the origin and inclined at the angle  a to the real axis. Thus 
A·eiωt represents a (radial) vector of magnitude A rotating at the angular speed ω (t being time). It may 
be noted that each of the inverse relations,

sin a=
(e i a

−e−i a
)

2 i

cos a=
(e i a

+e−i a
)

2

represents a birotation.
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Appendix II: The General Equation of a Constant Speed Wave
Let a wave of arbitrary but unchanging shape be traveling in the X-direction of the stationary reference 
frame X-Y at a constant speed u. This wave appears stationary in a reference frame X1-Y1 which moves 
at the same speed u along the X-direction. We can then write

x1=x−u⋅t ; y1= y  (32)

If the wave shape in the co-moving frame is given by y1 = f(x1), we have from Equation (1)

y= f (x−u⋅t )  (33)

By the chain rule for derivatives we have

∂ y
∂ x

=
dy
dx1

∂ x1

∂ x
=

dy
dx1

⋅1,

∂ y
∂ x

=
dy
dx1

∂ x1

∂ x
=

dy
dx1

⋅(−u) .

Therefore the relation between the two derivatives is

∂ y
∂ x

=−
1
u
⋅
∂ y
∂ t

 (34)

Similarly for a wave traveling in the -X direction we obtain

∂ y
∂ x

=+
1
u
⋅
∂ y
∂ t

 (35)

Now a repeated application of the above procedure yields

∂
2 y

∂ x2 =
1
u2⋅

∂
2 y

∂ t 2
 (36)

which is the governing equation of the wave function; and it is the same for waves traveling in either 
direction of the X-axis.


