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1 The Gravitational Limit
Gravitation and Space-Time Progression (STP) are the two oppositely directed scalar motions that 
decide  the  outcome of  all  physical  phenomena  in  the  universe  of  motion.  There  are  two hitherto  
unknown features of gravitation that the Reciprocal System has brought to light. The first one, which is  
relevant to atomic-scale phenomena, is that in the context of the familiar three-dimensional stationary 
frame  of  reference,  the  direction  of  gravitation  reverses  at  the  unit  space  limit:  it  manifests  as  a 
repulsive force in the time region—the region inside unit space. This phenomenon forms the basis of 
cohesion in solids.

The second feature is relevant to large-scale phenomena and is concerned with gravitation of mass 
aggregates.  Even though the net total  gravitational motion of a material  aggregate is  constant,  the 
effective magnitude of its force aspect is attenuated by the inverse-square law in the context of the 
three-dimensional stationary frame of reference. On the other hand, the magnitude of the force aspect 
of  the  STP is  independent  of  distances  since  the  progression  originates  at  every  location  of  the 
reference frame. Consequently, Larson points out, “…the gravitational limit of a mass is the distance at  
which the inward gravitational motion of another mass toward the mass under consideration is equal to 
its outward motion due to the progression of the natural reference system relative to our stationary 
system of reference… .”1 Thus, the net motion inside the gravitational limit is inward, while outside it 
is outward.

Let us consider a spherical aggregate of mass M. The force due to its gravitational motion acting on a 
unit mass situated at a distance x (outside of it) is given by

a g=
−G M

x2
dynes/gm or cm/s2  (1)

where  G is the “universal” constant of gravitation. The minus sign implies that the force is directed 
inward (that is, tending to decrease intervening distance).

In a similar manner, we can write that the outward force on the unit mass due to progression as

a p=P dynes/gm or cm/s2  (2)

where P may be referred to as the universal constant of progression. Thus, the net force per unit mass 
(that is, acceleration) at a distance x from a mass M is given by

an=a p+ag=P−
G M

x2
 (3)

Larson1 evaluates the gravitational limit adopting the magnitudes of the quantities concerned in natural 
units. In natural units, the so-called “constants of nature” do not occur, these being the result of an 
arbitrary choice of conventional units. Thus, the gravitational force, in natural units, due to a mass M at 

1 Larson, Dewey B., Universe of Motion (North Pacific Publishers, OR, 1984), p. 195.
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a distance  x (both in natural units) is simply  M/x2. And since the force due to progression, again in 
natural units, is unity, the gravitational limit d0 is evaluated from the relation

M

d 0
2
=1  (4)

However, there is another factor to be considered. Gravitation is the translatory aspect of the scalar 
rotation that constitutes units of matter (atoms). The rotation exists within unit space (the time region), 
whereas the linear translatory effect manifests in three-dimensional space (the time-space region). We 
have shown elsewhere2 that the atomic rotation is distributed over 156.44 degrees of freedom in the 
time region. In addition, linear translatory motion in the three-dimensional spatial region is distributed 
over 8 degrees of freedom. As such, the number of rotational units (mass units) in the time region that 
are in equilibrium with a unit of linear translation in the time-space region is 156.44 × 8. But it will be 
recalled that gravitation is a three-dimensional motion: in fact, a three-dimensional inverse speed.3 In 
terms of space-time units, its natural dimensions are t3/s3. Hence, the total number of possibilities over 
which  the  gravitational  effect  of  a  unit  of  mass  is  distributed  is  (156.44  × 8)3.  Considering  this, 
Equation (4) above has to be rewritten as

M

(156.44×8)
3
=d 0

2

in natural units.

Adopting the values of 1.65979×10-24 g, and 4.558816×10-6 cm for the natural units of mass and length 
respectively from Larson,4 we have the gravitational limit of a mass aggregate M as

d 0=3.77( M
M 0

)
1 /2

light-years  (5)

where M0 is the mass of the sun.

Using Equation (3) and setting an = 0 at the gravitational limit, we can now evaluate the force due to 
STP as  applicable  to  aggregate  phenomena  (and  in  the  context  of  a  three-dimensional  stationary 
reference frame) as

P=
G M

d 0
2

 (6)

=1.044×10−11 dyne/gm  (6-a)

2 Speeds in the region inside the gravitational limit
We can obtain the expressions for the speeds due to gravitation and progression respectively from 
Equations (1) & (2). If vg is the gravitational speed and t the time, from Equation (1),

2 K.V.K. Nehru, “The Inter-regional Ratio,” Reciprocity XVI (2-3), Winter 1985-1986, p. 5.
3 Larson, Dewey B., Nothing But Motion, (North Pacific Publishers, OR, 1979), p. 147-148.
4 Ibid., p. 160.
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a g=
dv g

dt
=(dv g

dx )×vg=
−G M

x2  

On integrating, we get

v g
2
=

2G M
x

+b1  (7)

where b1 is  the constant  of integration.  Similarly,  taking vp as  the speed due to  progression,  from 
Equation (2) we have

a p=(dv p

dx )×v p=P  

On integrating, we have

v p
2
=2 P x+b2  (8)

with b2 as the constant of integration. Taking, at the gravitational limit (x = d0), the net speed vn (= vp - 
vg) to be zero, we have vp = vg. Hence we obtain from Equations (7) & (8)

b1−b2=2(P d 0−
G M
d 0 )=2 d 0(P−

G M

d 0
2 )  

Substituting from Equation  (6) we finally have b1 = b2.  Since b1 and b2 pertain to two motions of 
altogether different origins, one possibility that immediately suggests itself is that b1 = b2 = 0. In fact, 
empirical evidence (on the velocity of escape) validates this possibility. We can now write down the 
expression  for  the  gravitational  speed  from Equation  (7).  We  will  find  it  convenient  to  have  the 
equations in non-dimensional form. Therefore, we write

v g=(2
G M

x )
1/2

=(2
G M
d 0 )

1/2

×(d 0

x )
1/2

=
v0

y1/2
 (9)

where y = x/d0, the distance in non-dimensional form, and

v0=(2
G M

d 0
)

1 /2

 (9-a)

which we shall henceforth refer to as the “zero-point speed” of the mass aggregate. The zero-point 
speed  v0,  may  be  viewed  as  the  gravitational  speed  that  is  in  equilibrium  with  the  STP at  the  
equilibrium distance d0. It has the significance of being the natural unit of speed germane to a mass 
aggregate. It serves the same function in the case of mass aggregates as is served by c, the speed of 
light in the case of individual mass units.

Using Equations (8) & (6), we can write the speed due to progression as

v p=v0× y1 /2  (10)

Finally, the net speed in the region inside the gravitational limit (y <= 1), but outside the mass  M is 
given by
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vn=v p−v g=v0( y1 /2
−

1

y1 /2)  (11)

It  may be  noted  that  for  distances  considerably smaller  than  the  gravitational  limit,  this  equation 
reduces to

vn=
−v0

y1/2  (11-a)

(the minus sign implying that the speed is inward.)

3 Speeds in the region outside the gravitational limit
An examination of Equation (11) shows that while the net speed is negative (radially inward) within the 
gravitational limit, it is positive or outward in the region beyond it.  The crucial point that must be  
recognized  at  this  juncture  is  that  “…the  three-dimensional  region  of  space  extends  only  to  the 
gravitational limit… beyond this limit… the gravitational effect of the aggregate… is in equivalent 
space rather than in actual space.”5 Larson further points out that all quantities in equivalent space are 
two dimensional in terms of actual space.6 Therefore, in order to obtain the speeds pertaining to the 
region beyond the gravitational limit, we have to take the respective second power expressions.

First, we convert the gravitational speed vg into natural units by dividing the zero-point speed v0 of the 
aggregate, and then square it. Thus, the expression for the gravitational speed in the outer region is 
(vg/v0)2. However, as this is two-dimensional, the effective speed in the dimension of the time-space 
region is half of this quantity. Therefore, the gravitational speed for x greater than d0 is given by

v
g0=

1
2(vg

v0
)

2

in natural units

=
1
2 ( vg

v0
)

2

×v0 in cm/s2

 

Substituting for vg/v0 from equation (9)

v g0=
1
2

v0

y
 (12)

Following similar procedure, we obtain from Equation (10) the speed due to STP effective in the outer 
region as

v
p0=

1
2

vo× y  (13)

Finally, the net speed in the outer region is

5 Larson, Dewey B., Universe of Motion, op. cit., p. 197.
6 Ibid., p. 210.
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vn0=
1
2

v0( y−
1
y)  (14)

4 Hubble’s Law
It can readily be seen that for distances large compared to the gravitational limit, equation (14) reduces 
to

v
n0=

1
2

v0× y  (14-a)

where vn0 is an outward speed. Substituting for v0 and y in terms of the original variables

vn0=
1
2(2G M

d 0 )
1 /2

( x
d 0)=(G M

2d 0
3 )

1 /2

×x  (15)

This is identical to Hubble’s law of the recession of the distant galaxies:

vr=H × x  

Hubble’s constant turns out to be

H =(G M
2 d 0

3 )
1/ 2

 (16)

Substituting for d0 from Equation (5), we note that Hubble’s constant is inversely proportional to the 
fourth root of the galactic mass. Thus, if M is in solar mass units,

H =
37302.19

M 1 /4
km s−1 Mpc−1  (16-a)

The value of Hubble’s constant could be calculated from the above equation, if we know the mass of 
our galaxy accurately. As it turns out, it is the Hubble constant that we know with less uncertainty than  
the mass of the galaxy. We will, therefore, calculate the mass of the galaxy from the above equation.  
Adopting the value H = 55 km s-1 Mpc-1, we have the following results for our galaxy

M G=2.116×1011 solar mass units  

and

d 0G=0.532 Mpc

v0G=58.5 km s−1
 

In passing, it may be remarked that Equation (14-a), which leads to the strictly linear form of Hubble’s 
law, is not applicable to shorter distances comparable to d0. For these distances, Equation (14) must be 
used. The discrepancy between the results of the two equations becomes significant for distances less 
than about 10 times d0 (that is, about 5 Mpc in the case of our galaxy). However, whether the variation 
of the recession speed within this distance range follows the strictly linear law is not observationally 
verifiable. This is because the speeds of the peculiar motion of these nearby galaxies are commensurate 
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with  their  recession  speeds  and since  the  former  are  random in  nature,  no  conclusion  is  possible 
regarding the manner of variation of the recession speed of these nearby galaxies with the distance.

5 Summary
1. The gravitational limit of an aggregate of mass M is given by

d 0=3.77( M
M 0

)
1 /2

light years

where M0 is the mass of the sun.

2. The value of the universal constant of progression for aggregate phenomena is

P=1.044×10−11 cm/s2

3. The natural unit of speed for a mass aggregate, called the zero-point speed, is given by

v0=(2G M
d 0

)
1 /2

cm/s

where G is the universal constant of gravitation.

4. The net speed due to gravitation and progression outside of a mass aggregate of mass M, at a 
distance x is given by

vn=v0( y1 /2
−

1

y1 /2) for y≤1.0

vn0=
1
2

v0( y−
1
y ) for y≥1.0

where y = x/d0.

5. The recession speed of distant galaxies (x > 10 d0) is given by

vr=H × x

H the Hubble’s constant = (G M
2 d 0

3 )
1/2

=
37302.19

( M
M 0)

1 /4 km s−1 Mpc−1

M being the mass of our galaxy.

6. The results calculated for our galaxy on the basis of H = 55 km.s-1.Mpc-1 are

mass = 2.116×1011 solar units

gravitational limit = 0.532 Mpc, and

zero-point speed = 58.5 km.s-1


