A discussion of gravity as a 3-dimensional, inward, scalar motion.
A discussion of gravity as a 3-dimensional, inward, scalar motion.
Some of the readers of my latest book, The Neglected Facts of Science, are apparently interpreting the conclusions of this work as indicating that the Reciprocal System of theory leads to a strict mechanistic view of the universe, in which there is no room for religious or other non-material elements. This is not correct.
In a letter published in the May 1975 issue of Reciprocity I stated that I preferred not to comment on articles submitted for publication because “I believe that it is very desirable to encourage free and open discussion of the (Reciprocal) theory and its applications, so that we can have the benefit of as many points of view as possible in extending and clarifying the theoretical structure.
(Promotion for The Universe of Motion)
The most significant feature of this new development is that it is a general physical theory, one in which the basic laws and principles of all physical fields are derived from a single set of fundamental postulates, without making any further assumptions of any kind, and without introducing anything from any outside source. Construction of such a theory has been a major goal of science for three thousand years, and an immense amount of time and effort has been devoted to the task. But until now, all of these efforts have been totally unsuccessful.
Larson discusses the association of quasars with other astronomical objects, indicating a common origin.
When the theory of the universe of motion, the Reciprocal System of theory as we are calling it, was first being introduced to the scientific community in books and lectures, about twenty-five years ago, one of the principal obstacles with which we had to contend was the generally accepted concept of the nature of motion, in which motion is regarded as a continuous change in the position of some “thing” in a three-dimensional space that acts as a background or container. In the Reciprocal System of theory, motion is defined simply as a relation between space and time, which means that “things” do not participate in the simplest types of motion. For those who were not willing to entertain the possibility that their basic concept of the nature of motion might be wrong, this closed the door to any consideration of the new theory, in spite of the outstanding successes of that theory in dealing with the most recalcitrant and long-standing problems of physical science.
It is not possible in the short time that is available in the conference sessions, to give full consideration to all of the issues that are brought up, and most of the discussions were elaborated to a considerable extent in informal conversations outside the regular sessions. A few comments on some of the more important points may be of interest to those that did not happen to be present when these particular issues were discussed.
Energy at high speeds:
In my publications I have followed a general policy of not duplicating material that is readily available in the textbooks, in order to conserve space for the new ideas that I am presenting. I therefore do not define terms that are in general use, commenting on the usage only where I have introduced some new concept, or have modified the meaning of a term. There was some confusion about my usage of the term “direction” originally, and I had occasion to discuss this matter in some of my publications. (See, for instance, Nothing But Motion, p.
An explanation of why acceleration decreases, rather than mass increasing, as objects approach the speed of light.
A look at how gravity affects galaxies.
Here in this diagram, reproduced from D. B. Larson’s book Quasars and Pulsars, is the evidence that confirms the reality of Halton Arp’s “associations” of quasars with other astronomical objects, and thereby not only provides a conclusive answer to the hotly debated question as to where the quasars are located, but also opens the door to a solution of the whole “quasar mystery”.
To the editor of Reciprocity:
I would like to call the attention of your readers to a series of letters in Nature initiated by a question raised by the prominent British scientist Herbert Dingle with respect to the special theory of relativity, and culminating in a communication from Professor Dingle published in the Aug. 31, 1973 issue of that journal.
But it seems to me that our present theories, even the successful ones, are not yet constructed so completely in accord with sound principles, but that in this day and generation criticism is a most necessary and useful enterprise for the physicist.—P.W. Bridgman1
Physical science stands today in a highly anomalous position. On the one hand, no branch of knowledge has ever occupied a higher place in general public esteem. The spectacular way in which the abstract ideas of the theoretical scientist and the discoveries of his colleagues in the laboratories have been applied to the fashioning of ingenious devices that have drastically changed the whole world picture has made a profound impression on the man in the street, and the word “scientific” has acquired an unparalleled prestige. To some degree, at least, these sentiments are shared by the rank and file of the professional scientists, and the confident words “We know…” continually echo and reecho through the halls of learning.
The task of presenting the case for a new svstem of thought is a difficult one at best, and in order that it may be successfully accomplished it is essential to confine the discussion to the specific points at issue, and to avoid being drawn into controversies regarding matters which, at least for the present, are irrelevant.
An overview of the concept of "motion," and how scalar motion differs from vectorial motion.
(Promotion for Quasars & Pulsars)
But as a scientist, or a philosopher, you are vitally concerned with the foundations of science, and the task of providing an explanation of the quasars is the great test that the basic laws and theories of physical science are today being called upon to meet: a test in which they are failing badly. Indeed, they are so helpless in the face of this challenge that prominent astronomers are finding it necessary to call for a “radical revision” of existing ideas. Under these circumstances it is highly significant that there is an available system of physical theory that can meet this crucial test; one which can furnish a comprehensive and consistent explanation of the quasars and associated phenomena—galactic explosions, pulsars, white dwarf stars, the recession of the galaxies, and so on.
To recipients of the review article QUASARS-THREE YEARS LATER:
This paper is a supplement to the book, Quasars and Pulsars, updating information contained therein.
As reported in the October 1977 issue of Reciprocity, I am now in the process of preparing the first volume of a revised edition of the book in which I introduced the Reciprocal System of theory, The Structure of the Physical Universe, a book which has been out of print for several years. As the successive chapters of the manuscript are completed, I have been circulating them for review and comment by a number of those members of the New Science Advocates with whom I have corresponded on the subject matter.
A look at the origins of the Universe.
This issue of Reciprocity marks its fourth anniversary, and provides a suitable occasion on which to make some comments with respect to the progress that has been made toward the objective that was defined in the first issue: promotion of understanding of the Reciprocal System of physical theory. The most serious obstacle in the way of a new theory in any field is the prevailing tendency to dismiss it summarily on the ground that the a priori probability of its being correct is too low to justify taking the time to examine it.
Since my return from the speaking trip through the East and Midwest that I undertook in April and May I have spent considerable time reviewing and analyzing the questions that were asked in the course of the long question and answer sessions that followed each of the eight talks that I gave to college audiences.
I have received a number of inquiries as to how well the observations of the supernova that has been observed in the Large Magellanic Cloud agree with the theoretical conclusions about supernovae in general that are expressed in The Universe of Motion. I cannot give a definite answer to this question as yet, since the observational data thus far reported are limited, and to some extent conflicting. However, I can give what may be considered a progress report, based on the situation as it stands in the light of the information that has appeared thus far in the publications accessible to the general public.
From the mathematical standpoint, the quantity that enters into such relation as the equation of motion can be either positive or negative, and the fact that time is observed to move only in one direction is frequently characterized as an anomaly, a “puzzle.” But there is nothing puzzling about the direction of time if it is viewed in physical terms. Time, as a physical quantity—the time interval between two events, for instance—cannot be less than zero.
One of the issues that usually comes up at some point during any extended discussion of the fundamentals of the Reciprocal System of theory is what the writers of detective stories would probably call The Case of the Colliding Photons.
The frontiers of modern science are in the far-out regions, the realms of the very small, the very large, the very fast, the very dense, and so on. It is there that spectacular discoveries are being made, and the boundaries of physical science are being extended into the hitherto unknown. But some of these achievements that have been headlined in the press and in the scientific journals, have had collateral results of even greater significance that have been overlooked by the scientific community. These particular discoveries have given us factual information about some of the fundamental physical entities that have heretofore been accepted as being beyond the range of physical investigation. When we examine all of the implications of this new knowledge, it becomes clear that the prevailing view of the nature of the basic constituents of the physical universe will have to be drastically modified.
Letter to the Editor of Reciprocity:
Larson examines the white dwarf stars in light of faster-than-light speeds creating an inverse density structure.
Some of the most significant consequences are related to the dimensions of this hitherto unrecognized type of motion. The word “dimension” is used in several different senses, but in the sense in which it is applied to space it signifies the number of independent magnitudes that are required for a complete definition of a spatial quantity. It is generally conceded that space is three-dimensional. Thus three independent magnitudes are required for a complete definition of a quantity of space.
As I pointed out in the article on “Reference Systems” published in the Winter 1977-78 issue of Reciprocity, the representation of the physical universe in a three-dimensional spatial coordinate system is not fully in agreement with reality. This system cannot represent some of the properties that do exist, such as motion in time. whereas it portrays some properties of the universe that actually do not exist, such as the directions of scalar motions.
At the 1984 ISUS conference in Salt Lake City a discussion of the “inter-regional ratio” concluded with an understanding that each of those concerned should write a statement of his ideas on the subject for publication in Reciprocity. What follows is Dewey B. Larson’s contribution.
Principal Address to the First Annual NSA Conference, Minneapolis, Minnesota, August 20, 1976
The human race, in its modern form, has been observing the universe from the surface of this planet for something like 50,000 years, perhaps as much as 100,000. But only within the last three or four thousand years has it had the capacity to analyze these observations and arrive at conclusions as to their significance. Yet on the basis of this extremely limited experience we somehow feel that we are competent to investigate events which, if they happened at all, happened ten or twenty billion years ago, and other events which, if they are ever going to happen, will not happen for an equally long time into the future.
Transcript of Mr. Larson’s address to the Seventh Annual Convention of the International Society of Unified Science in Philadelphia, USA, on August 13, 1982.
“To attempt a definite statement as to the meaning of so fundamental and underlying a notion as that of time is a task from which even philosophy may shrink,”1 says Richard Tolman in his classic treatise on Relativity. But the “notion” of time is basic in every field of science.
Larson's keynote address for the third Annual ISUS conference at the University of Utah, Salt Lake City, August 18, 1978. Also published in Frontiers of Science, Volume III, No. 5, July-August, 1981.
An overview of the physics of motion, published in "Frontiers of Science," July-August, 1982.
How to visualize the concept of scalar motion as differentiated from vectorial motion.
From the very beginning of the kind of disciplined thinking about the physical world that we now call science, one of the major objectives has been to identify its basic constituent, or constituents; to answer the question, What is the world made of? The earliest theories of which we have detailed knowledge, those developed by the Ionians in the years from about 600 to about 400 B.C., and by the Chinese around the same time, were of two general types. One group of philosophers, reasoning from an assumption as to the unity of nature, argued for a single constituent. Water was the usual choice, although there was some support for air. Another group contended that the great multiplicity of physical forms required the existence of a number of basic constituents. The most popular choice among the early investigators in the West was a four-element universe, constructed of earth, water, air, and fire, an identification that achieved a kind of an official status when it was accepted by Aristotle. The Chinese recognized five basic elements, omitting air and adding metal and wood.
The objective of the project being undertaken by Professor Meyer and his associates is to test the validity of the explanation of the cohesion of solids derived from a development of the consequences of the fundamental postulates of the Reciprocal System of physical theory, the basic premise of which is that the physical universe is composed entirely of discrete units of motion.
Dewey B. Larson is an anachronism in the modern scientific world. Whatever else may be said of modern science, it is generally true that it has become, and is further becoming, less and less controversial. The great success of science seems to have instilled into ’the man in the street’ and scientist alike, an exaggerated respect, akin to religious reverence. Most scientists, preoccupied as they are with the obscurities of their own narrow field, rarely, if ever, question the underlying assumptions on which science rests. Larson does.
Theme by Danetsoft and Danang Probo Sayekti inspired by Maksimer